If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-24x-141=0
a = 1; b = -24; c = -141;
Δ = b2-4ac
Δ = -242-4·1·(-141)
Δ = 1140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1140}=\sqrt{4*285}=\sqrt{4}*\sqrt{285}=2\sqrt{285}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{285}}{2*1}=\frac{24-2\sqrt{285}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{285}}{2*1}=\frac{24+2\sqrt{285}}{2} $
| 8(4t-5)=100 | | 63-o=48 | | 40x+5(1.5x)=1442 | | 6(x-5)+2=2(3x+4) | | 11x-63=5x-11+2x+20 | | (m-2/3)+1=2m/7 | | 139=2x-19 | | h-55=81 | | 135=2x-19 | | h/55=81 | | 36+g=64 | | 2(4u=9)=98 | | x+2+3=-7-5= | | 13z-12z-8=72 | | 9/3y-13=-4 | | 19=-7k | | -4z-2=-18 | | 14/42=19/x | | x=5+0.22/0.24 | | -(0.24)*(x+2)=-1.9 | | (1,90)/(2+x)=0,24 | | -x-(-2)=6 | | (1,90)/(2+x)=24 | | y=0.2-4/4 | | n+24=7n | | 12+q=2/3 | | 4x−5(2x+1)=-6 | | 0.24=(2+x)0.95 | | 2x+1÷5=18/10 | | 0.95=(2+x)(0.24) | | 2t+20=t+10 | | 2t+10=t+10 |